
Formal Methods, Testing, and Reuse - towards Reliability Conservation IEE 19th June 1990

Formal Methods, Testing, and Reuse - towards
Reliability Conservation for Software

Pat Hall, Tom Gedeon, Chris Reade
Department of Computer Science,

Brunel University

The Reliability Problem

Safety-critical systems require ultra-high reliability. Figures of demand
reliability of 1 0 - 9 have been cited - but how could this ever be measured?
Demand reliability of 10-n requires ton++' test cases (eg Rook 1990) -
where n=9, tests at one per second would take 300 years!
continuously running processes takes equally long to establish.
can we ever have software systems with proven reliability of the required
levels?

Reliability of
So how

Even if we don't actually measure the reliability, we want assurance that
these figures are achieved.
claimed to produce systems of this calibre, as indicated int he ACARD
report (1986), and the draft 00-55 (MOD 1989) mandating formal methods.
But no evidence has been advanced that these methods do actually achieve
these levels of reliability.

Formal methods and verification have been

How might we obtain assurance that formal methods do indeed deliver the
reliability promised? One approach might be to carry our controlled
trails, developing a number of systems and then measuring the reliability
of these to thereby assess the reliability of the methods.
compounds the problem - we have to conduct not just one but many of
those 300 year experiments outline above.

But that just

What can we?

In one way or another we must exercise our code, both to the connection of
the software to the hardware (cf. Fetzer's (1988) argument), and to
measure reliability. Could we perhaps mix testing and formal methods, in
some way to squeeze more reliability estimation out of each test case?
A simple idea might be to use formal reasoning to "spread" each test case
throughout its behavioural domain, as in black box testing (eg. Hetzel
1984), but this is not where the problem lies - it lies in the sheer size
and complexity of the software that we produce and the formal reasoning
processes that are required.

pavh., tdg, cmpr, 11/6/90
7/1

Formal Methods, Testing, and Reuse - tcwards Reliability Conservation IEE 19th June 1990

Reliability Conservation through Reuse

So what can we do?
how do the guarantee these ultra-high levels of reliability?
to be two ways:
(i) build the system from parts with proven reliability, and then

Let us turn to traditional engineering technologies:
There seem

calculate the reliability of the whole from that of the parts and the
rules of composition

or
(i i) use complete systems proven through long use, permitting small

changes, and using arguments like I' we have always done it that way".

This is building new systems from previous systems or parts of them, this
is software reuse (eg. Hall and Boldyreff, 1989). For software, we do not
have large collections of parts other than in special applications, like
libraries of mathematical routines, though this in improving.
considered good practice to record the quality and reliability for these
parts (eg. Moineau, Abadir and Rames, 1990). The methods of composition
can be very complex, as manifest in Module Interconnection Languages (eg.
Prieto-Diaz and Neighbors 1986), and methods of calculating the
reliability of the whole from that of the parts is not yet possible (Melior
1987)
demonstrably reliable systems does not seem promising.

It is now

A purely components approach to the construction of

So could we take existing complete software systems and redeploy these?
This is re-engineering (eg. Chikovsky and Cross, 1990). And in doing this
re-engineering, could we conserve the reliability of these systems? This
does seem promising, for consider some base cases:

we reuse a complete system that has been running without problems for
many years, without any changes whatsoever - do we carry over the
proven reliability into the new application?
operational patterns may vary, and as jaundiced developers of software
know, bringing a new user on-stream always throws up new errors.
But it is close. And we could view the issue as one of training the
users to use the system reliability, the bugs become features.
we enhance a stable system in small ways for the same set of users,
and thoroughly regression test the changes. Clearly if the system was
assessed as highly reliable beforehand, then it will be so afterwards.
What the precise change in reliability might be needs investigation, but
clearly a lot of reliability does carry over.

Well, not quite, for the

For new systems, what do we do?
at some level they rely on generic systems architectures, into which
particular generic parts are slotted.
interfaces which provide a focus for specification, proof, and reliability
measurement. Both these generic architectures and the parts will have

Well, most systems are not that new,

These generic parts will have clean

pavh, tdg, cmpr, 1116l90
7/2

Formal Methods, Testing, and Reuse - towards Reliability Conservation IEE 19th June 1990

been proven in practice - so why can't we just put the system together,
and know that it will be reliable? It is not that simple, we inevitably
make some changes, and need to understand the effects of these changes:

what is the reliability of the parts that we use?
extracted from some existing system, and we could instrument the
system and discover how the part was used and how it contributed to
the reliability of the whole. We need a way of deducing the reliability
of the part from the reliability of the whole, turning the earlier desire
to calculate reliabilities on its head.
we abstract (reverse engineer) the parts and the system structure form
the original, changing them in the process. We need to use proven (ie.
formally verified and thoroughly tested) transformations (eg. Gedeon
1989) - and confront the issue of to what extent can we trust these
transformations. Do we go into an infinite regress, or can we produce
more reliable systems using less reliable tools?
when we add new parts to the system, we will need to prove these new
parts correct, and test them and the whole system. Test cases may be
derived from the formal specifications of the modules, test suites may
be controlled by systems extracted from the formal specifications of
the system.

These may have been

For a reliability conservation programme, we need to bring these threads
together.
conservation of reliability of the original system as we move to the new
system?
reliability, and it seems the only way that we will be able to do so for
software.

Can we blend the tests with formal reasoning and guarantee the

This is how traditional engineering guarantees ultra-high

References

ACARD, SOFTWARE. A vital key to UK competitlveness, Cabinet Office Advisory Council
for Applied Research and Development (ACARD), HMSO, 1986.

Chikovsky, E.J. and Cross, J.H.11, Reverse Engineering and Design Recovery: a Taxonomy. IEEE
Software. January 1990

Fetzer J.H., 1988. .Program Verification: the Very Idea, CACM vol 31, No 9, Sept 1988.
pages 1048-1 063.

Gedeon, T.D. IMP: An Interactive Program Transformation System, PhD Thesis, The
University of Western Australia, 1989.

Hall, Patrick and Cornelia Boldyreff. SofrWare Reuse Overview, in Reuse, Maintenance, and
Reverse Engineering of Software, Unicom seminar, Dec. 1989

Hetzel, William. The Complete Guide to Software Testing. Collins, 1984.
Mellor, Peter, Software Reliability Modelling: the state of the art. Information and

Software Technology Journal, March April 1987
MOD, Interim Defence Standard 00-55 (draft), Requirements for the Procurement of

Safety Critical Software in Defence Equipment. 1989.
Prieto-Dim, Ruben and James Neighbors, Module lnterconnection Languages. Journal of

Systems Sciences, vol 6, no 4, November 1986, pages 307-334.
Rook, Paul. Software Reliability Handbook, (Editor) Elsevier 1990

pavh, , tdg, cmpr, 11/6/90

